Quiz C12.2

SHM (HL)

1. Two harmonic oscillators are described by the equations $x_1 = 5\sin(6\pi t + \frac{\pi}{3})$ and

 $x_1 = 5\sin(6\pi t - \frac{\pi}{6})$. What is the phase difference between the two?

A
$$\frac{\pi}{6}$$
 B $\frac{\pi}{4}$ **C** $\frac{\pi}{2}$ **D** π

2. The displacement in a simple harmonic motion is given by $x = 6\sin(\frac{2\pi t}{3})$ where x is in m and t in s. What is the maximum speed and maximum acceleration in this motion?

	Maximum speed /m s ⁻¹	Maximum acceleration /m s ⁻²
Α	$\frac{4\pi}{3}$	$\frac{8\pi^2}{3}$
В	$\frac{4\pi}{3}$	$\frac{8\pi^2}{9}$
С	4π	$\frac{8\pi^2}{3}$
D	4π	$\frac{8\pi^2}{9}$

3. The graph shows the variation with time of the displacement of a particle performing simple harmonic oscillations.

What is the equation for the displacement?

- A $x = 4\sin(2t)$
- **B** $x=4\sin(2t+\frac{\pi}{2})$
- **C** $x = 4\sin(\pi t)$
- **D** $x = 4\sin(\pi t + \frac{\pi}{2})$
- **4.** The maximum acceleration in a simple harmonic motion is 12 m s⁻² and the maximum speed is 6.0 m s⁻¹. What is the period of oscillations in seconds?
 - **A** π **B** 2π **C** $\frac{1}{\pi}$ **D** $\frac{1}{2\pi}$
- 5. The amplitude in a simple harmonic motion is x_0 . The maximum speed is v_{max} . What is the speed when the displacement is $\frac{x_0}{2}$?

A
$$\frac{v_{\text{max}}}{2}$$
 B $\frac{3}{4}v_{\text{max}}$ **C** $\frac{\sqrt{3}}{2}v_{\text{max}}$ **D** $\frac{v_{\text{max}}}{\sqrt{2}}$

6. A block of mass *m* is placed on a horizontal plate. The plate is performing vertical simple harmonic oscillations with period *T* and amplitude *Z*.

What is the difference between the magnitude of the normal force on the block at the **bottom** of the motion and that at the **top**?

- **A** 0 **B** $\frac{2\pi^2 mZ}{T^2}$ **C** $\frac{4\pi^2 mZ}{T^2}$ **D** $\frac{8\pi^2 mZ}{T^2}$
- 7. The displacement in a simple harmonic motion is given by $x = 6\sin(\frac{\pi t}{3} + \frac{\pi}{2})$. What is the equation for the velocity?
 - A $v = -2\pi \sin(\frac{\pi t}{3})$ B $v = 2\pi \sin(\frac{\pi t}{3})$ C $v = -2\pi \cos(\frac{\pi t}{3})$ D $v = 2\pi \cos(\frac{\pi t}{3})$

8. Which graph describes simple harmonic oscillations?

9. The amplitude in a simple harmonic motion is *Z*. What is the displacement when the kinetic energy is double the potential energy?

A
$$\frac{Z}{\sqrt{2}}$$
 B $\frac{Z}{\sqrt{3}}$ **C** $\frac{Z}{2\sqrt{2}}$ **D** $\frac{2Z}{\sqrt{3}}$

10. The displacement in a simple harmonic motion is given by $x = 2\sin(\pi t)$. Which is a possible graph for the variation with time of the potential energy?

Quiz C12.2 Answers		
1	С	
2	С	
3	D	
4	Α	
5	С	
6	D	
7	Α	
8	В	
9	В	
10	D	